286 research outputs found

    Anti-disturbance fault tolerant initial alignment for inertial navigation system subjected to multiple disturbances

    Get PDF
    Modeling error, stochastic error of inertial sensor, measurement noise and environmental disturbance affect the accuracy of an inertial navigation system (INS). In addition, some unpredictable factors, such as system fault, directly affect the reliability of INSs. This paper proposes a new anti-disturbance fault tolerant alignment approach for a class of INSs sub- jected to multiple disturbances and system faults. Based on modeling and error analysis, stochastic error of inertial sensor, measurement noise, modeling error and environmental disturbance are formulated into different types of disturbances described by a Markov stochastic process, Gaussian noise and a norm-bounded variable, respectively. In order to improve the accuracy and reliability of an INS, an anti-disturbance fault tolerant filter is designed. Then, a mixed dissipative/guarantee cost performance is applied to attenuate the norm-bounded disturbance and to optimize the estimation error. Slack variables and dissipativeness are introduced to reduce the conservatism of the proposed approach. Finally, compared with the unscented Kalman filter (UKF), simulation results for self-alignment of an INS are provided based on experimental data. It can be shown that the proposed method has an enhanced disturbance rejection and attenuation performance with high reliability

    Enhanced predictor–corrector Mars entry guidance approach with atmospheric uncertainties

    Get PDF
    Due to the long-range data communication and complex Mars environment, the Mars lander needs to promote the ability to autonomously adapt uncertain situations ensuring high precision landing in future Mars missions. Based on the analysis of multiple disturbances, this study demonstrates an enhanced predictor–corrector guidance method to deal with the effect of atmospheric uncertainties during the entry phase of the Mars landing. In the proposed method, the predictor–corrector guidance algorithm is designed to autonomously drive the Mars lander to the parachute deployment. Meanwhile, the disturbance observer is designed to onboard estimate the effect of fiercely varying atmospheric uncertainties resulting from rapidly height decreasing. Then, with the estimation of atmospheric uncertainties compensated in the feed-forward channel, the composite guidance method is put forward such that both anti-disturbance and autonomous performance of the Mars lander guidance system are improved. Convergence of the proposed composite method is analysed. Simulations for a Mars lander entry guidance system demonstrates that the proposed method outperforms the baseline method in consideration of the atmospheric uncertainties

    Constrained anti-disturbance control for a quadrotor based on differential flatness

    Get PDF
    The classical control design based on linearised model is widely used in practice even to those inherently nonlinear systems. Although linear design techniques are relatively mature and enjoy the simple structure in implementations, they can be prone to misbehaviour and failure when the system state is far away from the operating point. To avoid the drawbacks and exploit the advantages of linear design methods while tackling the system nonlinearity, a hybrid control structure is developed in this paper. First, the model predictive control is used to impose states and inputs constraints on the linearised model, which makes the linearisation satisfy the small-perturbation requirement and reduces the bound of linearisation error. On the other hand, a combination of disturbance observer based control and H1 control, called composite hierarchical anti-disturbance control, is constructed for the linear model to provide robustness against multiple disturbances. The constrained reference states and inputs generated by the outer-loop model predictive controller are asymptotically tracked by the inner-loop composite anti-disturbance controller. To demonstrate the performance of the proposed framework, a case study on quadrotor is conducted

    Flight control design for small-scale helicopter using disturbance observer based backstepping

    Get PDF
    Flight control design for small-scale helicopter using disturbance observer based backsteppin

    Wheat drought assessment by remote sensing imagery using unmanned aerial vehicle

    Get PDF
    This work aims at evaluating the usability of remote sensing RGB imagery by an Unmanned Aerial Vehicle (UAV) in assessing wheat drought status. A UAV survey is conducted to collect high-resolution RGB imageries by using DJI S1000 for the experimental wheat fields of Gucheng town, Heibei Province, China. The soil moisture for different plots of the experimental filed is kept at an approximately constant level for the whole growing season in a well controlled environment, where field measurements are performed just after the UAV survey to obtain the soil water content for each plot. A machine learning based wheat drought assessment framework is proposed in this work. In the proposed framework, wheat pixels are first segmented from the soil background using the classical normalized excess green index (NExG). Rather than using pixel-wise classification, a pixel square of appropriate dimension is defined as the samples, based on which various features are extracted for the wheat pixels including statistical features and spectral index features. Different classification algorithms are experimented to identify a suitable one in terms of classification accuracy and computation time. It is discovered that Support Vector Machine with Gaussian kernel can obtain an accuracy over 90%, which demonstrates the usefulness of RGB imagery in wheat drought assessment

    Online optimisation-based backstepping control design with application to quadrotor

    Get PDF
    In backstepping implementation, the derivatives of virtual control signals are required at each step. This study provides a novel way to solve this problem by combining online optimisation with backstepping design in an outer and inner loop manner. The properties of differential flatness and the B-spline polynomial function are exploited to transform the optimal control problem into a computationally efficient form. The optimisation process generates not only the optimised states but also their finite order derivatives which can be used to analytically calculate the derivatives of virtual control signal required in backstepping design. In addition, the online optimisation repeatedly performed in a receding horizon fashion can also realise local motion planning for obstacle avoidance. The stability of the receding horizon control scheme is analysed via Lyapunov method which is guaranteed by adding a parametrised terminal condition in the online optimisation. Numerical simulations and flight experiments of a quadrotor unmanned air vehicle are given to demonstrate the effectiveness of the proposed composite control method

    Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons

    Get PDF
    Hyperspectral images (HSI) provide rich information which may not be captured by other sensing technologies and therefore gradually find a wide range of applications. However, they also generate a large amount of irrelevant or redundant data for a specific task. This causes a number of issues including significantly increased computation time, complexity and scale of prediction models mapping the data to semantics (e.g., classification), and the need of a large amount of labelled data for training. Particularly, it is generally difficult and expensive for experts to acquire sufficient training samples in many applications. This paper addresses these issues by exploring a number of classical dimension reduction algorithms in machine learning communities for HSI classification. To reduce the size of training dataset, feature selection (e.g., mutual information, minimal redundancy maximal relevance) and feature extraction (e.g., Principal Component Analysis (PCA), Kernel PCA) are adopted to augment a baseline classification method, Support Vector Machine (SVM). The proposed algorithms are evaluated using a real HSI dataset. It is shown that PCA yields the most promising performance in reducing the number of features or spectral bands. It is observed that while significantly reducing the computational complexity, the proposed method can achieve better classification results over the classic SVM on a small training dataset, which makes it suitable for real-time applications or when only limited training data are available. Furthermore, it can also achieve performances similar to the classic SVM on large datasets but with much less computing time

    Disturbance/uncertainty estimation and attenuation techniques in PMSM drives–a survey

    Get PDF
    This paper gives a comprehensive overview on disturbance/uncertainty estimation and attenuation (DUEA) techniques in permanent magnet synchronous motor (PMSM) drives. Various disturbances and uncertainties in PMSM and also other alternating current (AC) motor drives are first reviewed which shows they have different behaviors and appear in different control loops of the system. The existing DUEA and other relevant control methods in handling disturbances and uncertainties widely used in PMSM drives, and their latest developments are then discussed and summarized. It also provides in-depth analysis of the relationship between these advanced control methods in the context of PMSM systems. When dealing with uncertainties,it is shown that DUEA has a different but complementary mechanism to widely used robust control and adaptive control. The similarities and differences in disturbance attenuation of DUEA and other promising methods such as internal model control and output regulation theory have been analyzed in detail. The wide applications of these methods in different AC motor drives (in particular in PMSM drives) are categorized and summarized. Finally the paper ends with the discussion on future directions in this area

    Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery

    Get PDF
    The use of a low-cost five-band multispectral camera (RedEdge, MicaSense, USA) and a low-altitude airborne platform is investigated for the detection of plant stress caused by yellow rust disease in winter wheat for sustainable agriculture. The research is mainly focused on: (i) determining whether or not healthy and yellow rust infected wheat plants can be discriminated; (ii) selecting spectral band and Spectral Vegetation Index (SVI) with a strong discriminating capability; (iii) developing a low-cost yellow rust monitoring system for use at farmland scales. An experiment was carefully designed by infecting winter wheat with different levels of yellow rust inoculum, where aerial multispectral images under different developmental stages of yellow rust were captured by an Unmanned Aerial Vehicle at an altitude of 16–24m with a ground resolution of 1–1.5cm/pixel. An automated yellow rust detection system is developed by learning (via random forest classifier) from labelled UAV aerial multispectral imagery. Experimental results indicate that: (i) good classification performance (with an average Precision, Recall and Accuracy of 89.2%, 89.4% and 89.3%) was achieved by the developed yellow rust monitoring at a diseased stage (45 days after inoculation); (ii) the top three SVIs for separating healthy and yellow rust infected wheat plants are RVI, NDVI and OSAVI; while the top two spectral bands are NIR and Red. The learnt system was also applied to the whole farmland of interest with a promising monitoring result. It is anticipated that this study by seamlessly integrating low-cost multispectral camera, low-altitude UAV platform and machine learning techniques paves the way for yellow rust monitoring at farmland scales

    Empirical approach to threshold determination for the delineation of built-up areas with road network data

    No full text
    <div><p>Various approaches have been proposed to address the delineation of built-up areas for a wide range of applications. Recently developed approaches are based on the increasing availability of road network data. However, most approaches have employed one or more parameters to divide built-up from non-built-up areas. Very few studies have discussed how to determine appropriate thresholds for such parameters. This study employed an empirical approach for threshold determination, and validated that the approach is applicable for the delineation of built-up areas using road network data. A series of experiments were designed to investigate the most-appropriate thresholds (determined using a similarity measure) for multiple parameters of three existing approaches (street blocks, grid-based, and kernel density) with regard to different administrative regions and cities/towns. The results show that in most cases, the most-appropriate thresholds or ranges for different subdivisions are either identical or overlap—thus validating the use of the most-appropriate thresholds to delineate built-up areas for one or multiple small subdivisions and, by inference, for a much larger region.</p></div
    • …
    corecore